The $\mathrm{LYND}_{\mathrm{N}} \mathrm{X}$ Project

Arnaud Lefebvre

14 December 2023

Back to the origins...

Standard sequences: Lyndon, 1954

Let C_{n} be the set of all sequences c of length n, and define S_{n} to be the subset of those "standard" c that have the property of preceding lexicographically all of their own proper terminal segments $c_{k} c_{k+1} \cdots c_{n}, 1<k \leqq n$.
"algorithmics" is a standard sequence.
"mathematics" is not a standard sequence.

Regular words: Shirshov, 1953

Подалгебры свободных лиевых алгебр

А. И. Ширшов (Москва)

Определение 1. Слова длины 1 , т. е. сами элементы множества R, назовем правильными словами и произвольно упорядочим. Считая, что правильные слова, длины которых меньше $n, n>1$, уже определены и упорядочены при помощи отношения \leqslant так, что слова меньшей длины предшествуют словам большей длины, назовем слово w длины n правильным при выполнении условий:

1) $w=u v$, где u, v - правильные слова и $u>v$;
2) если $u=u_{1} u_{2}$, то $u_{2} \leqslant v$.

Определенные таким образом правильные слова длины n произвольно упорядочим и положим, что они больше правильных слов меньшей длины.

Regular words: Shirshov, 1953

Subalgebras of Free Lie Algebras

A.I. Shirshov

Definition 1. We will call words of length 1, i.e., elements of R, regular words, and we will order them arbitrarily. Assuming that regular words of length less than $n, n>1$, are already defined and ordered by the relation \leq in such a way that shorter words precede longer words, we call a word w of length n regular if the following conditions are satisfied:

1) $w=u v$ where u and v are regular words and $u>v$;
2) if $u=u_{1} u_{2}$ then $u_{2} \leq v$.

We will order arbitrarily the regular words of length n defined in this way, and declare that they are greater than shorter words.

Lyndon words

Let w be a Lyndon word (not reduced to a single letter):

- w is strictly lexicographically smaller than all its proper suffixes
- w is the smallest element of its conjugacy class
- let v be the longest proper suffix of w that is a Lyndon word, then $\mathrm{w}=\mathrm{uv}$ where u is also a Lyndon word and $\mathrm{u}<_{\text {Lex }} \mathrm{v}$: it is called the "standard factorization" or "right standard factorization"
- similarly, let u ' be the longest proper prefix of w that is a Lyndon word, then $\mathrm{w}=\mathrm{u}$ 'v' where v ' is also a Lyndon word and u ' $<_{\text {LEX }} \mathrm{v}^{\prime}$: it is called the "left standard factorization"

Lyndon words: a 2D point of view

Lyndon words: a 2D point of view

irrational slope $=$ sturmian word

Lyndon words: a 2D point of view

Lyndon words: a 2D point of view

rational slope $\frac{y}{x}=$ Christoffel word

Lyndon words: a 2D point of view

Lyndon words: a 2D point of view

rational slope $\frac{y}{x}$ with x and y co-prime $=$ Lyndon word

Lyndon words: a 2D point of view

closest point $=$ standard factorization

Lyndon words: a 2D point of view

more distant point $=$ palindromic factorization

Lyndon words: a 2D point of view

Lyndon words: a 2D point of view

Lyndon words: a 2D point of view

aabaababaabab

Lyndon words: a 2D point of view

Lyndon words: a 2D point of view

$(8,5)$

Lyndon words: a 2D point of view

Lyndon words: a 2D point of view

aababbabb is a Lyndon word but. . .

Lyndon tree and left Lyndon tree

The Chen-Fox-Lyndon Theorem

In 1958, Chen, Fox and Lyndon established that any word w can be uniquely factored in a non increasing sequence of Lyndon words:

$$
\mathrm{w}=\mathrm{abbabbabbab}
$$

The Chen-Fox-Lyndon Theorem

In 1958, Chen, Fox and Lyndon established that any word w can be uniquely factored in a non increasing sequence of Lyndon words:

$$
\mathrm{w}=\mathrm{abbabbabbab}
$$

$$
\mathrm{abb}
$$

The Chen-Fox-Lyndon Theorem

In 1958, Chen, Fox and Lyndon established that any word w can be uniquely factored in a non increasing sequence of Lyndon words:

$$
\begin{aligned}
\mathrm{w}= & \mathrm{abbabbabbab} \\
& \mathrm{abb} \geq_{\mathrm{LEx}} \mathrm{abb}
\end{aligned}
$$

The Chen-Fox-Lyndon Theorem

In 1958, Chen, Fox and Lyndon established that any word w can be uniquely factored in a non increasing sequence of Lyndon words:

$$
\begin{aligned}
\mathrm{w}= & \mathrm{abbabbabbab} \\
& \mathrm{abb} \geq_{\mathrm{LEX}} \mathrm{abb} \geq_{\mathrm{LEX}} a \mathrm{ab}
\end{aligned}
$$

The Chen-Fox-Lyndon Theorem

In 1958, Chen, Fox and Lyndon established that any word w can be uniquely factored in a non increasing sequence of Lyndon words:

$$
\begin{aligned}
\mathrm{w}= & \mathrm{abb} \mathrm{abb} \mathrm{ab} b \mathrm{ab} \\
& \mathrm{abb} \geq_{\mathrm{LEX}} \mathrm{abb} \geq_{\mathrm{LEX}} \mathrm{ab} \mathrm{~b} \geq_{\mathrm{LEX}} \mathrm{ab}
\end{aligned}
$$

Booth (1980)

Finds the least circular substring (based on Knuth-Morris-Pratt algorithm, 1977).

Factorization into Lyndon words [Duval,83]

$$
\mathrm{w}=\mathrm{b} b \mathrm{abbabababa} \mathrm{aba} \mathrm{a} a
$$

Let w_{i} and w_{j} be two letters at positions $i<j$:
Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border
Case 2: $\mathrm{w}_{i}<_{\text {Lex }} \mathrm{w}_{j}$ then next current factor is a Lyndon word
Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

current factor
$\mathrm{w}=\overrightarrow{\mathrm{b}} \mathrm{b} \mathrm{ab} \mathrm{b} a \mathrm{~b} \mathrm{ab} \mathrm{ab} \mathrm{a} a \mathrm{a} \mathrm{a} \mathrm{a} \mathrm{a}$

Let w_{i} and w_{j} be two letters at positions $i<j$:
\rightarrow Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border Case 2: $\mathrm{w}_{i}<_{\text {Lex }} \mathrm{w}_{j}$ then next current factor is a Lyndon word Case 3: $\mathrm{w}_{i}>_{\text {LEX }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

current factor

$\mathrm{w}=\overrightarrow{\mathrm{b} b} \mathrm{ab} \mathrm{b} a \mathrm{bababa} \mathrm{aba} \mathrm{a}$

Let w_{j} and w_{j} be two letters at positions $i<j$:
Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border
Case 2: $\mathrm{w}_{i}<_{\text {Lex }} \mathrm{w}_{j}$ then next current factor is a Lyndon word
\rightarrow Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

current factor
$\mathrm{w}=\overrightarrow{\mathrm{b} b} \mathrm{abbabababaabaa}$

Let w_{i} and w_{j} be two letters at positions $i<j$:
Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border
Case 2: $\mathrm{w}_{i}<_{\text {Lex }} \mathrm{w}_{j}$ then next current factor is a Lyndon word
Case 3: $\mathrm{w}_{i}>_{\text {LEX }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

current factor
$\mathrm{w}=\mathrm{b} \mathrm{b} \overrightarrow{\mathrm{a}} \mathrm{b} \mathrm{b} a \mathrm{~b} \mathrm{ab} \mathrm{ab} \mathrm{a} a \mathrm{a} \mathrm{a} a \mathrm{a}$

Let w_{j} and w_{j} be two letters at positions $i<j$:
Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border
\rightarrow Case 2: $\mathrm{w}_{i}<_{\text {LEX }} \mathrm{w}_{j}$ then next current factor is a Lyndon word Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

current factor
$\mathrm{w}=\mathrm{b} b \overrightarrow{\mathrm{ab}} \mathrm{b} a \mathrm{~b} a \mathrm{~b} a \mathrm{~b} \mathrm{a} a \mathrm{a} \mathrm{a} a \mathrm{a}$

Let w_{j} and w_{j} be two letters at positions $i<j$:
Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border
\rightarrow Case 2: $\mathrm{w}_{i}<_{\text {LEX }} \mathrm{w}_{j}$ then next current factor is a Lyndon word Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

\quad current factor
$\mathrm{w}=\mathrm{b} \mathrm{b} \stackrel{\mathrm{abb}}{\mathrm{a}} \mathrm{b} \mathrm{ab} \mathrm{ab} \mathrm{a} \mathrm{ab} \mathrm{a} \mathrm{a} \mathrm{a}$

Let w_{j} and w_{j} be two letters at positions $i<j$:
\rightarrow Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border Case 2: $\mathrm{w}_{i}<_{\text {LEx }} \mathrm{w}_{j}$ then next current factor is a Lyndon word Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

$$
\begin{gathered}
\quad \text { current factor } \\
\mathrm{w}=\mathrm{b} \mathrm{~b} \stackrel{\mathrm{a} \mathrm{~b} \mathrm{~b} \mathrm{a} \mathrm{~b}}{\mathrm{~b}} \mathrm{~b} \mathrm{a} \mathrm{~b} \mathrm{a} \mathrm{a} \mathrm{~b} \mathrm{a} \mathrm{a} \mathrm{a}
\end{gathered}
$$

Let w_{j} and w_{j} be two letters at positions $i<j$:
\rightarrow Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border Case 2: $\mathrm{w}_{i}<_{\text {Lex }} \mathrm{w}_{j}$ then next current factor is a Lyndon word Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

> current factor
> $\mathrm{w}=\mathrm{b} \mathrm{b} \overrightarrow{\mathrm{abbab}} \mathrm{ab} \mathrm{ab} \mathrm{a} a \mathrm{a} \mathrm{a} a \mathrm{a}$

Let w_{j} and w_{j} be two letters at positions $i<j$:
Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border
Case 2: $\mathrm{w}_{i}<_{\text {Lex }} \mathrm{w}_{j}$ then next current factor is a Lyndon word
\rightarrow Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

> current factor
> $\mathrm{w}=\mathrm{b} \mathrm{b} \stackrel{\mathrm{ab} \mathrm{b} a \mathrm{~b}}{\mathrm{a}} \mathrm{b} \mathrm{ab} \mathrm{a} \mathrm{a} \mathrm{b} \mathrm{a} \mathrm{a} \mathrm{a}$

Let w_{j} and w_{j} be two letters at positions $i<j$:
Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border
Case 2: $\mathrm{w}_{i}<_{\text {LEx }} \mathrm{w}_{j}$ then next current factor is a Lyndon word
\rightarrow Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

current factor
$\mathrm{w}=\mathrm{b} \mathrm{b} a \mathrm{ab} \overrightarrow{\mathrm{a}} \mathrm{b} a \mathrm{a} a \mathrm{aba} \mathrm{aba} \mathrm{a} a$

Let w_{j} and w_{j} be two letters at positions $i<j$:
Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border
\rightarrow Case 2: $\mathrm{w}_{i}<_{\text {LEX }} \mathrm{w}_{j}$ then next current factor is a Lyndon word Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

current factor
$\mathrm{w}=\mathrm{b} \mathrm{b} a \mathrm{ab} \overrightarrow{\mathrm{ab}} \mathrm{a} b \mathrm{ab} a \mathrm{ab} a \mathrm{a} a$

Let w_{j} and w_{j} be two letters at positions $i<j$:
\rightarrow Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border Case 2: $\mathrm{w}_{i}<_{\text {Lex }} \mathrm{w}_{j}$ then next current factor is a Lyndon word Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

current factor
$\mathrm{w}=\mathrm{b} \mathrm{babb} \mathrm{abab} \mathrm{aba} a \mathrm{a} a \mathrm{a} a$

Let w_{j} and w_{j} be two letters at positions $i<j$:
\rightarrow Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border Case 2: $\mathrm{w}_{i}<_{\text {LEx }} \mathrm{w}_{j}$ then next current factor is a Lyndon word Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

> current factor
> $\mathrm{w}=\mathrm{b} \mathrm{b} \mathrm{a} \mathrm{b} \mathrm{b} \stackrel{\mathrm{ab} \mathrm{ab} \mathrm{a} \mathrm{b} \mathrm{a} \mathrm{a} \mathrm{b} \mathrm{a} \mathrm{a} \mathrm{a}}{ }$

Let w_{j} and w_{j} be two letters at positions $i<j$:
\rightarrow Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border Case 2: $\mathrm{w}_{i}<_{\text {Lex }} \mathrm{w}_{j}$ then next current factor is a Lyndon word Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

$$
\frac{\text { current factor }}{\mathrm{w}=\mathrm{b} \mathrm{~b} \mathrm{a} \mathrm{~b} \mathrm{~b} \mid \mathrm{ababa} \mathrm{~b} \mathrm{a} \mathrm{ab} \mathrm{a} \mathrm{a} \mathrm{a}}
$$

Let w_{i} and w_{j} be two letters at positions $i<j$:
\rightarrow Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border Case 2: $\mathrm{w}_{i}<_{\text {Lex }} \mathrm{w}_{j}$ then next current factor is a Lyndon word Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

$$
\frac{\text { current factor }}{\mathrm{w}=\mathrm{b} \mathrm{~b} \mathrm{a} \mathrm{~b} \mathrm{~b} \mid \mathrm{ab} \mathrm{ab} \mathrm{ab} \mathrm{a} \mathrm{ab} \mathrm{a} \mathrm{a} \mathrm{a}}
$$

Let w_{j} and w_{j} be two letters at positions $i<j$:
\rightarrow Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border Case 2: $\mathrm{w}_{i}<_{\text {LEx }} \mathrm{w}_{j}$ then next current factor is a Lyndon word Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

$$
\mathrm{w}=\mathrm{bb} \mathrm{babb} \mathrm{abababa} \mathrm{a} \mathrm{~b} \mathrm{a} a \mathrm{a}
$$

Let w_{j} and w_{j} be two letters at positions $i<j$:
Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border
Case 2: $\mathrm{w}_{i}<_{\text {LEx }} \mathrm{w}_{j}$ then next current factor is a Lyndon word
\rightarrow Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

$$
\mathrm{w}=\mathrm{b} \mathrm{~b} \mathrm{abb} \stackrel{\text { current factor }}{\text { c }} \mathrm{ab} \mathrm{aba} \mathrm{ab} \mathrm{a} \mathrm{a} \mathrm{a}
$$

Let w_{j} and w_{j} be two letters at positions $i<j$:
Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border
Case 2: $\mathrm{w}_{i}<_{\text {Lex }} \mathrm{w}_{j}$ then next current factor is a Lyndon word
\rightarrow Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

\[

\]

Let w_{j} and w_{j} be two letters at positions $i<j$:
\rightarrow Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border Case 2: $\mathrm{w}_{i}<_{\text {Lex }} \mathrm{w}_{j}$ then next current factor is a Lyndon word Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

> | current factor |
| :---: |
| $\mathrm{w}=\mathrm{b} \mathrm{b} \mathrm{a} \mathrm{b} \mathrm{b} \mathrm{a} \mathrm{b} \mathrm{a} \mathrm{b}\|\mathrm{ab}\| \mathrm{a} \overrightarrow{\mathrm{a}} \mathrm{b} \mathrm{a} \mathrm{a} \mathrm{a}$ |

Let w_{i} and w_{j} be two letters at positions $i<j$:
Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border
\rightarrow Case 2: $\mathrm{w}_{i}<_{\text {LEX }} \mathrm{w}_{j}$ then next current factor is a Lyndon word Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

> | current factor |
| :---: |
| $\mathrm{w}=\mathrm{b} \mathrm{b} \mathrm{abb} \mathrm{a} \mathrm{b} \mathrm{a} \mathrm{b} \mathrm{ab} \stackrel{\mathrm{a} \mathrm{ab}}{\mathrm{a}} \mathrm{a} \mathrm{a} \mathrm{a}$ |

Let w_{j} and w_{j} be two letters at positions $i<j$:
\rightarrow Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border Case 2: $\mathrm{w}_{i}<_{\text {LEx }} \mathrm{w}_{j}$ then next current factor is a Lyndon word Case 3: $\mathrm{w}_{i}>_{\text {LEX }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

$$
\mathrm{w}=\mathrm{b} \mathrm{~b} \mathrm{abb} \mathrm{a} \mathrm{~b}|\mathrm{ab} \mathrm{ab}| \mathrm{a} \operatorname{a} \mathrm{ba} \mathrm{a} \mathrm{a} .
$$

Let w_{j} and w_{j} be two letters at positions $i<j$:
\rightarrow Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border Case 2: $\mathrm{w}_{i}<_{\text {Lex }} \mathrm{w}_{j}$ then next current factor is a Lyndon word Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

current factor
$\mathrm{w}=\mathrm{b} \mathrm{babbablablab} \mathrm{\xrightarrow[abaa]{a}}$

Let w_{j} and w_{j} be two letters at positions $i<j$:
Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border
Case 2: $\mathrm{w}_{i}<_{\text {Lex }} \mathrm{w}_{j}$ then next current factor is a Lyndon word
\rightarrow Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

current factor
$w = b b a b b a b a b a b \longdiv { a b a a } a$

Let w_{j} and w_{j} be two letters at positions $i<j$:
Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border
Case 2: $\mathrm{w}_{i}<_{\text {Lex }} \mathrm{w}_{j}$ then next current factor is a Lyndon word
\rightarrow Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

$$
\begin{aligned}
& \text { current factor } \\
& \mathrm{w}^{2}=\mathrm{b} b \mathrm{babbabablabaab} \mathrm{\vec{a} a a}
\end{aligned}
$$

Let w_{j} and w_{j} be two letters at positions $i<j$:
\rightarrow Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border Case 2: $\mathrm{w}_{i}<_{\text {LEx }} \mathrm{w}_{j}$ then next current factor is a Lyndon word Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

$$
\begin{aligned}
& \text { current factor } \\
& w=b b a b b a b a b a b a a b \mid a \operatorname{ab}
\end{aligned}
$$

Let w_{j} and w_{j} be two letters at positions $i<j$:
\rightarrow Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border Case 2: $\mathrm{w}_{i}<_{\text {LEx }} \mathrm{w}_{j}$ then next current factor is a Lyndon word Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

$$
\begin{aligned}
& \text { current factor } \\
& \mathrm{w}=\mathrm{bbabbabababaabla}
\end{aligned}
$$

Let w_{i} and w_{j} be two letters at positions $i<j$:
Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border
Case 2: $\mathrm{w}_{i}<_{\text {Lex }} \mathrm{w}_{j}$ then next current factor is a Lyndon word
Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

$$
\mathrm{w}=\mathrm{bbabbablablabla} \mathrm{ab} \stackrel{\mathrm{a} \mid \mathrm{a} \mathrm{a}}{\mathrm{c}}{ }^{\text {current factor }}
$$

Let w_{i} and w_{j} be two letters at positions $i<j$:
Case 1: $\mathrm{w}_{i}=\mathrm{w}_{j}$ then next current factor has a border
Case 2: $\mathrm{w}_{i}<_{\text {Lex }} \mathrm{w}_{j}$ then next current factor is a Lyndon word
Case 3: $\mathrm{w}_{i}>_{\text {Lex }} \mathrm{w}_{j}$ then current factor can be factored into Lyndon word(s) (according to its period)

Factorization into Lyndon words [Duval,83]

$$
\mathrm{w}=\mathrm{b} \mathrm{~b} a \mathrm{ab} \mathrm{ab} \mathrm{ab} \mathrm{ab} \mathrm{a} a \mathrm{~b} \mathrm{a} a \mathrm{a}
$$

Factorization is performed:

- online
- in linear time
- with constant extra space (3 integers)

But. . .

... where do the Lyndon words come from?

Lothaire, 1982

M. LOTHAIRE

Combinatorics
on Words

ENGYCLOPEDIA OF MATHEMATICS AND ITSAPPLCATIONS

The origin of "Lyndon words"

J.P. DUVAL +

Rêsumê: Nous établissons une caractếrisation des facteurs gauches d'un mot de Lyndon, à partir de laquelle nous dêgageons les propriêtés importantes des factorisations, qui servent de base à la détermination d'un algorithme de factorisation en mots de Lyndon, he mot à factoriser est iu de gauche à droite, et le côt d'exécution de l'algorithme est linéaire en la longueur du mot.

ImTRODUCTION

Les mots de Lyndon dérivent du calcul dana les algèbres de lie libres et forment une factorisation complate du monoilde libre (Cf. [CFL] [SC]) Ils peuvent être utilisés dans divers problèmes de combinatoires. (Cf. [D]).

L'algorithme que nous presentons pour effectuer la factorisation, procède à une lecture du not de gauche à droite et factorise au fur et à mesure, aprè̀s détermination de la plus petite translation, (ou période) du facteur résiduel; il utilise dans une prenière approche 1'algorithne de Morris et Pratt. (Cf. [MP], [KMP])

+ Laboratoire d'informatique - Facultê des Sciences - Université de rourn B.P. 67 - 76130 mowt saint atgan

Suffix permutation \rightarrow Lyndon factorization

Factorization \rightarrow suffix permutation [Mantaci et al,2013]

$$
\begin{aligned}
& \mathrm{w}=\mathrm{b} b \mathrm{abbabababaabaaa} \\
& \operatorname{sp}(W)=\begin{array}{llllllllllllll}
16 & 14 & 8 & 15 & 13 & 7 & 12 & 6 & 11 & 5 & 10 & 3 & 4 & 9
\end{array} 2
\end{aligned}
$$

Given the Lyndon factorization of a word, the relative order of two suffixes inside one of these factors is the same as their relative order in the whole word.

Burrows-Wheeler Transform Scottified [Scott,2007]

Burrows-Wheeler Transform Scottified [Scott,2007]

Burrows-Wheeler Transform Scottified [Scott,2007]

bb
ab
ab
ab
a a b
a
a
a

a

Burrows-Wheeler Transform Scottified [Scott,2007]

```
b
b
a b b
a b
a b conjugates
a b
a a b
a
a
a
```

 b

Burrows-Wheeler Transform Scottified [Scott,2007]

b
b
abb
ab
a b conjugates
ab
a a b
a
a
a
b
b

Burrows-Wheeler Transform Scottified [Scott,2007]

b
b
abb
ab
$\mathrm{ab} \quad$ conjugates
ab
a ab
a
a
a

b
b
abb
bab
b b a
ab
a b conjugates
ab
a ab
a

Burrows-Wheeler Transform Scottified [Scott,2007]

b
b

abb
ab
$\mathrm{ab} \quad$ conjugates
ab
a ab
a
a
a
b
b
abb
bab
b b a
ab
ba
abonjugates
a b
a ab
a

Burrows-Wheeler Transform Scottified [Scott,2007]

b		b
b		b
		ab b
ab b		b a b
		b ba
ab		ab
		b a
ab	conjugates	ab
ab		
$\mathrm{a} a \mathrm{~b}$		
a		
a		

Burrows-Wheeler Transform Scottified [Scott,2007]

b
a b b
bab
b ba
a b
ab
ba
ab conjugates
ab
ba
a b
a b
ba
a ab
a
a
a

Burrows-Wheeler Transform Scottified [Scott,2007]

b
b
b
abb
a b b
bab
b b a
a b
ab
ba
ab conjugates
a b
ba
a b
a b
ba
a ab
aba
baa
a
a
a

Burrows-Wheeler Transform Scottified [Scott,2007]

Burrows-Wheeler Transform Scottified [Scott,2007]

Burrows-Wheeler Transform Scottified [Scott,2007]

b	
b	
abb	
ab	
ab	conjugates
a b	
a a b	
a ab	
a	
a	

Burrows-Wheeler Transform Scottified [Scott,2007]

b	b		a
b	b		a
	ab b		a
ab b	$\mathrm{b} a \mathrm{~b}$		a ab
	b b a		aba
ab	ab		ab
	b a		ab
ab	conjugates ab	sort	ab
ab	ab		b a a
	b a		b a
	$\mathrm{a} a \mathrm{~b}$		b a
a ab	$\mathrm{ab} a$		b a
	b a a		b a b
a	a		$\mathrm{b} \mathrm{b} a$
a	a		b
a	a		b

Burrows-Wheeler Transform Scottified [Scott,2007]

b		b		a		a
b		b		a		a
		abb		a		a
ab b		$\mathrm{b} a \mathrm{~b}$		$\mathrm{a} a \mathrm{~b}$		b
		b b a		aba		a
ab		ab		ab		b
		b a		ab		b
ab	conjugates	a b	sort	ab	bwts	b
a b		a b		abab		b
		b a		b a		a
		$\mathrm{a} a \mathrm{~b}$		b a		a
$\mathrm{a} a \mathrm{~b}$		aba		b a		a
		ba a		bab		b
a		a		b b a		a
a		a		b		b
a		a		b		b

Burrows-Wheeler Transform Scottified [Scott,2007]

Burrows-Wheeler Transform Scottified [Scott,2007]

0	$\mathrm{a} \longleftrightarrow$	a 0	(0)
1	a	a 1	
2	a	a 2	
3	a	b 9	
4	a	a 3	
5	a	b 10	
6	a	b 11	
7	a	b 12	
8	a	b 13	
	b	a 4	
10	b	a 5	
11	b	a 6	
12	b	a 7	
		b 15	
	b	a 8	
15		b 14	
16		b 16	

Burrows-Wheeler Transform Scottified [Scott,2007]

Burrows-Wheeler Transform Scottified [Scott,2007]

Burrows-Wheeler Transform Scottified [Scott,2007]

$$
\begin{align*}
& 0 \mathrm{a} \longleftrightarrow \mathrm{a} 0 \tag{0}\\
& 1 \text { a } \tag{1}\\
& \longleftrightarrow a \mathrm{a} \\
& 2 \text { a } \tag{2}\\
& \text { a } 2 \\
& 3 \text { a } \\
& \text { b } 9 \tag{3,4,9}\\
& 4 \text { a } \\
& 6 \text { a } \\
& 7 \text { a } \\
& 10 \text { b } \\
& \text { a } 5 \\
& 11 \text { b } \\
& \text { a } 6 \\
& 12 \text { b } \\
& \text { a } 7 \\
& 13 \text { b } \\
& \text { b } 15 \\
& 14 \text { b } \\
& \text { a } 8 \\
& 15 \text { b } \\
& \text { b } 14 \\
& 16 \text { b } \\
& \text { b } 16
\end{align*}
$$

Burrows-Wheeler Transform Scottified [Scott,2007]

$$
\begin{align*}
& 0 \text { a } \\
& \longleftrightarrow a \quad 0 \tag{0}\\
& 1 \text { a } \tag{1}\\
& \longleftrightarrow a \mathrm{a} 1 \\
& 2 \text { a } \tag{2}\\
& \text { a } 2 \\
& 3 \text { a } \\
& \text { b } 9 \tag{3,4,9}\\
& 4 \\
& \text { a } 3 \\
& 5 \\
& \text { b } 10 \\
& \text { b } 11 \\
& 6 \\
& \text { b } 12 \\
& (5,10) \\
& \text { b } 13 \\
& 8 \\
& 10 \\
& \text { a } 4 \\
& 11 \text { b } \\
& \text { a } 5 \\
& 12 \text { b } \\
& \text { a } 6 \\
& 13 \mathrm{~b} \\
& \text { a } 7 \\
& 14 \text { b } \\
& 15 \text { b } \\
& \text { b } 15 \\
& 16 \text { b } \\
& \text { a } 8 \\
& \text { b } 14 \\
& \text { b } 16
\end{align*}
$$

Burrows-Wheeler Transform Scottified [Scott,2007]

$$
\begin{align*}
& 0 \quad \mathrm{a} \tag{0}\\
& \longleftrightarrow a \quad 0 \tag{1}\\
& 4 \\
& 5 \text { a } \\
& 6 \\
& 2 \text { a } \tag{2}\\
& \text { a } 2 \\
& \text { b } 9 \tag{3,4,9}\\
& \text { a } 3 \\
& (5,10) \\
& (6,11)
\end{align*}
$$

Burrows-Wheeler Transform Scottified [Scott,2007]

$$
\begin{align*}
& 0 \quad \mathrm{a} \tag{0}\\
& \longleftrightarrow a \quad 0 \\
& \longleftrightarrow a \mathrm{a} 1 \tag{1}\\
& 2 \text { a } \\
& 3 \text { a } \\
& \longleftrightarrow a \operatorname{a} \tag{2}\\
& 4 \tag{5,10}\\
& \text { b } 9 \tag{3,4,9}\\
& (7,12) \tag{6,11}
\end{align*}
$$

Burrows-Wheeler Transform Scottified [Scott,2007]

Lyndon words generation [Duval,1988]

Lyndon words of length up to 4 :

Lyndon words generation [Duval,1988]

Lyndon words of length up to 4 :
a

Lyndon words generation [Duval,1988]

Lyndon words of length up to 4:
a
a a a a

Lyndon words generation [Duval,1988]

Lyndon words of length up to 4:
a
$a \mathrm{a} a \mathrm{~b}$

Lyndon words generation [Duval,1988]

Lyndon words of length up to 4 :

```
a
a a a b
a a b
```


Lyndon words generation [Duval,1988]

Lyndon words of length up to 4 :
a
a a ab
$a \mathrm{ab}$
a aba

Lyndon words generation [Duval,1988]

Lyndon words of length up to 4 :
a
a a ab
a ab
$a \mathrm{abb}$

Lyndon words generation [Duval,1988]

Lyndon words of length up to 4 :
a
$a \mathrm{a} a \mathrm{~b}$
$a \mathrm{ab}$
$a \mathrm{abb}$
a b

Lyndon words generation [Duval,1988]

Lyndon words of length up to 4:
a
$a \mathrm{a} a \mathrm{~b}$
$a \mathrm{ab}$
$a \mathrm{abb}$
$a b$
$a b a b$

Lyndon words generation [Duval,1988]

Lyndon words of length up to 4 :
a
$a \mathrm{a} a \mathrm{~b}$
$a \mathrm{ab}$
$a \mathrm{abb}$
$a b$
$a b b$

Lyndon words generation [Duval,1988]

Lyndon words of length up to 4 :
a
$a \operatorname{abb}$
$a \operatorname{ab}$
$a \operatorname{abb}$
$a b$
$a b b$
$a b b a$

Lyndon words generation [Duval,1988]

Lyndon words of length up to 4 :
a
$a \operatorname{abb}$
$\mathrm{a} a \mathrm{~b}$
$\mathrm{a} a \mathrm{~b} b$
ab
abb
abbb

Lyndon words generation [Duval,1988]

Lyndon words of length up to 4 :

$$
\begin{aligned}
& \mathrm{a} \\
& \mathrm{a} a \mathrm{ab} \\
& \mathrm{a} a \mathrm{~b} \\
& \mathrm{a} a \mathrm{~b} b \\
& \mathrm{a} b \\
& \mathrm{a} b \mathrm{~b} \\
& \mathrm{a} b \mathrm{~b} b \\
& \mathrm{~b}
\end{aligned}
$$

de Bruijn word of order n

A de Bruijn word of order n is a circular word containing exactly one occurrence of all possible words of length n.

de Bruijn word of order n

A de Bruijn word of order n is a circular word containing exactly one occurrence of all possible words of length n. For instance, the words of length 4 over a binary alphabet are:

de Bruijn word of order n

A de Bruijn word of order n is a circular word containing exactly one occurrence of all possible words of length n.
For instance, the words of length 4 over a binary alphabet are:
a a a a

de Bruijn word of order n

A de Bruijn word of order n is a circular word containing exactly one occurrence of all possible words of length n.
For instance, the words of length 4 over a binary alphabet are:
a a a a
a a ab

de Bruijn word of order n

A de Bruijn word of order n is a circular word containing exactly one occurrence of all possible words of length n.
For instance, the words of length 4 over a binary alphabet are:
a a a a
$a \mathrm{a} a \mathrm{~b}$
a aba

de Bruijn word of order n

A de Bruijn word of order n is a circular word containing exactly one occurrence of all possible words of length n.
For instance, the words of length 4 over a binary alphabet are:
a a a a
a a ab
a aba
$a \mathrm{abb}$

de Bruijn word of order n

A de Bruijn word of order n is a circular word containing exactly one occurrence of all possible words of length n.
For instance, the words of length 4 over a binary alphabet are:
a a a a
a a ab
a aba
$\mathrm{a} a \mathrm{~b}$ b
$\mathrm{aba} a$

de Bruijn word of order n

A de Bruijn word of order n is a circular word containing exactly one occurrence of all possible words of length n.
For instance, the words of length 4 over a binary alphabet are:
a a a a
a a ab
a aba
a abb
aba a
$a b a b$

de Bruijn word of order n

A de Bruijn word of order n is a circular word containing exactly one occurrence of all possible words of length n.
For instance, the words of length 4 over a binary alphabet are:
a a a a
$a \mathrm{a} a \mathrm{~b}$
a aba
a abb
$\mathrm{aba} a$
abab
abba

de Bruijn word of order n

A de Bruijn word of order n is a circular word containing exactly one occurrence of all possible words of length n.
For instance, the words of length 4 over a binary alphabet are:
a a a a
$a \mathrm{a} a \mathrm{~b}$
$a \mathrm{aba}$
$a \mathrm{abb}$
$a b a a$
$a b a b$
abba
abbb

de Bruijn word of order n

A de Bruijn word of order n is a circular word containing exactly one occurrence of all possible words of length n.
For instance, the words of length 4 over a binary alphabet are:
a a a a
a a ab
a aba
$a \mathrm{abb}$
$a b a a$
$a b a b$
$a b b a$
$a b b b$
baaa

de Bruijn word of order n

A de Bruijn word of order n is a circular word containing exactly one occurrence of all possible words of length n.
For instance, the words of length 4 over a binary alphabet are:
a a a a
a a ab
a aba
$a \mathrm{abb}$
aba a
abab
abba
$a b b b$
baa a
baab

de Bruijn word of order n

A de Bruijn word of order n is a circular word containing exactly one occurrence of all possible words of length n.
For instance, the words of length 4 over a binary alphabet are:
a a a a
$a \mathrm{a} a \mathrm{~b}$
a aba
$a \mathrm{abb}$
aba a
$a b a b$
abba
abbb
bata
bacb
baba

de Bruijn word of order n

A de Bruijn word of order n is a circular word containing exactly one occurrence of all possible words of length n.
For instance, the words of length 4 over a binary alphabet are:
a a a a
$a \mathrm{a} a \mathrm{~b}$
a aba
$\mathrm{a} a \mathrm{~b}$ b
$a b a a$
$a b a b$
abba
abbb
baa a
bacb
baba
babb

de Bruijn word of order n

A de Bruijn word of order n is a circular word containing exactly one occurrence of all possible words of length n.
For instance, the words of length 4 over a binary alphabet are:
a a a a
$a \mathrm{a} a \mathrm{~b}$
a aba
$a \mathrm{abb}$
$a b a a$
$a b a b$
$a b b a$
$a b b b$
baa a
$\mathrm{b} a \mathrm{a} \mathrm{b}$
baba
babb
b ba a

de Bruijn word of order n

A de Bruijn word of order n is a circular word containing exactly one occurrence of all possible words of length n.
For instance, the words of length 4 over a binary alphabet are:
a a a a
a a ab
a aba
$a \mathrm{abb}$
aba a
$a b a b$
abba
abbb
baa a
bacb
baba
babb
$\mathrm{b} b \mathrm{a} a$
b bab

de Bruijn word of order n

A de Bruijn word of order n is a circular word containing exactly one occurrence of all possible words of length n.
For instance, the words of length 4 over a binary alphabet are:
a a a a
$a \mathrm{a} a \mathrm{~b}$
a aba
a abb
$\mathrm{aba} a$
$a b a b$
abba
abbb
baa a
baab
baba
babb
$\mathrm{b} b \mathrm{a} a$
b bab
b b b a

de Bruijn word of order n

A de Bruijn word of order n is a circular word containing exactly one occurrence of all possible words of length n.
For instance, the words of length 4 over a binary alphabet are:
a a a a
a a ab
a aba
$a \mathrm{abb}$
abaa
abab
abba
abbb
baaa
baab
baba
babb
bbaa
bbab
bbba
bbbb
de Bruijn word of order n
a a a a
$a \mathrm{a} a \mathrm{~b}$
$a \mathrm{aba}$
$a \mathrm{abb}$
$a b a a$
$a b a b$
$a b b a$
$a b b b$
baca

b
a
b
baba
$\mathrm{b} a \mathrm{~b} \mathrm{a}$
babb
bba a
$\mathrm{b} b \mathrm{ab}$
bbba
bbbb

de Bruijn word of order n

de Bruijn word of order n

a a a					
a a ab					
$\mathrm{a} a \mathrm{ba}$					
$\mathrm{a} a \mathrm{bb}$					
abaa a					
$a b a b \quad b^{\text {a }}$					
$\begin{array}{ll}\text { abba } & \text { b }\end{array}$					
$\mathrm{baaa} \longrightarrow \mathrm{b}$					
baba a					
$b a b b$					
bbaa a ${ }^{\text {a }}$					
b bab					
bbba					
bbbb					

de Bruijn word of order n

de Bruijn word of order n [Fredricksen et al,1978]

de Bruijn word of order n [Fredricksen et al,1978]

de Bruijn word of order n [Fredricksen et al,1978]

de Bruijn word of order n [Fredricksen et al,1978]

de Bruijn word of order n [Fredricksen et al,1978]

de Bruijn word of order n [Fredricksen et al,1978]

de Bruijn word of order n [Fredricksen et al,1978]

Back to the origins...

Conclusion

What I didn't talk about

- how Lyndon words can be useful for proving theorems
- Lyndon arrays
- Lyndon border arrays and Lyndon suffix arrays
- Lyndon words as convex envelops
- certainly many other things

Conclusion

Re "Lyndon words", I very much hope that they will some day be commonly known (also?) as "prime strings", because they are so fundamentally important.

D. E. Knuth, Oct. 2023

Arnaud Lefebvre

